Существуют три общих способа: прямое умножение, метод опорного числа и метод Трахтенберга.
Освойте их все, так как каждый может быть более предпочтительным в той или иной ситуации.
Отрабатывать полученные навыки можно с помощью тренировочной таблицы.
Этот метод удобен, когда один из множителей находится в диапазоне 12–18 или заканчивается на 1, а другой значительно от него отличается.
Один из множителей мысленно разбивают на десятки и единицы. Затем умножают другой множитель на десятки, потом на единицы и складывают.
Например, 62×13 = 62×10 + 62×3 = 620 + 186 = 806.
Иногда удобно разбивать на десятки и единицы больший множитель: 42×17 = 17×40 + 17×2 = 714.
Для освоения метода требуется небольшая практика, однако он очень удобен, когда два множителя — близкие числа. В частности, это основной способ для возведения двузначных чисел в квадрат.
Опорное число — это круглое число, близкое к обоим множителям. Оно может быть меньше обоих множителей, больше обоих множителей или находится между ними.
В качестве опорного числа следует выбирать числа, на которые легко умножать. Например, 50 или 100, если они близки к двум множителям.
В зависимости от того, как соотносятся опорное число и множители, техника умножения немного различается.
а. Опорное число меньше двух множителей. Например, нужно умножить 32 на 36.
б. Опорное число больше двух множителей. Например, нужно умножить 43 на 48.
в. Опорное число — между множителями. Например, нужно умножить 37 на 42.
Метод Трахтенберга — самый общий. Им удобно пользоваться всегда, когда не работают специальные приемы. Он также распространяется на умножение многозначных чисел.
Поскольку метод Трахтенберга не совсем привычен, при его освоении лучше иметь множители перед глазами. В дальнейшем практикуйтесь без записи исходных чисел.
Разберем метод на примере умножения 87 на 32.
Почитать: Э. Катлер и Р. Мак-Шейн. Система быстрого счета по Трахтенбергу